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Introduction

In Russian Federation and all over the world
there are a lot of regions with high seismic actiwy.

It IS no secret that in many of these regions
energy gap Is an essential problem. It should be
noted that in many cases for such regions
nowadays there is no alternative of nuclear
energy.

At present time the new production of power-
generating units of nuclear plant is under
consideration in Russian Federation.




This year in Russian Federation the NewCode
“Seismic analysis of Nuclear Structures” has been
developed

Seismic analysis of safety-related nuclear
structures Is a very important and complex problem

There are a lot of different methods and
computer programs, recommended for seismic
design of the nuclear structures.

We introduce our own method, which may be
Interesting for researchers, designers and students

We suppose that our method has preference in
comparison with well-known methods on dynamic
problem application




Definitions

The functions describing stresses and strain
of finite continuum or bodies that are equal to
zero outside the domain occupied of this
continuum or the body are the finite functions.

An entire function, (integral function), is a
complex-valued function that is holomorphic
over the whole complex plane.

Every entire function can be represented as a
power convergent series.

Any entire function can be represented by a
product Iinvolving its zeroes. (The Welerstrass
factorization theorem).




Paley-Wiener- Schwartz's Theorem

“The Fourier transform of a distribution of
compact support on R' iIs an entire function on
cm

The classical Paley—Wiener theorems make
use of the holomorphic Fourier transform on
classes of square-integrable functions supported
on the real line.

The theorem for distribution) was proven
later by Laurent Schwartz (1952).




The Main Principles of the Method

The functions which described displacement,
stresses and strain of finite continuumor bodies
are represented by finite functions that are equal
to zero outside the domain occupied of this

continuum or the body.

In the right parts of represented In that way
Ifferential equations there will be functions
escribing load, delta functions and Its
erivatives, concentrated on the boundaries of
ne domain.




The Right Parts of the Differential
eguations

The functions of the right describe interaction
between the finite continuum and surroundings and
represent stresses, strain and displacement on the
boundary.

Some of these functions are given. The remainder
unknown functions it iIs necessary to define.

Paley—Wiener- Schwartz's Theorengives an
opportunity to install relations between loads and
value of boundary functions and to determine
unknown ones.




Boundary Problem Represented In

Distribution

Let Q - Is compact domain with S
boundary,

O(Q) =+

1,x00 - .
- charactenstic function Of

0, x1Q

this domain,

thenU (x) ={U (x)} (Q) —a finite function.

Suppose. - differentiation operator with

constant

coefficients irt2 domain.

Applying differentiation operator L to the
finite function U (x), the differential equatior

can be wntten Iin distnbution:

LU(X) =a(x)+ > 43 (S) +_1,9*(S)




LU (X) =q(X) +>_ 145 (S) +)_ 19" (S)
where ((X)— load, applied inside domai

(finite function),
U, - given boundary values functiortJ (X) anc

values of its denvatives at the nomal intersectn
of the boundarysS,

V.- unknown boundary values functionx

and values of its denvatives at the nomm
intersection of the boundanb,

0% (S) - delta functions and its derivatives,

concentrated on the boundariess of the domain
Q




Theorem

“Unknown boundary values function U(x)_and values of it

denvatives, can be determmined by the values of o#ner transform of
the nght part the differential equation on zeroes polynomial
corresponded to operatorl. ”.

The differential equation becomes, after applicatin of the Fouriel
transform

L) () = G4) +F (X 4" (9)) + F (X 1.5 (9))
where
u(u,,U,,U,) - transformation parameters,
L (v) -polynomial corresponded to operatorl_,
U (v)- Fourier transform of finite function U (x),
d(v) - Founer transform of finite function q(x),
= (Z ,ukdk(S)) and F (Z ykdk(S)) - Fourier transform of the
boundary finite functions.




Proof

The equation (2) makes it possible to wnte the expression f
Fourner transform of U (x) function:

_GW)+F (X 43 (9)+F (X1 (9)
- T0)

U (v) ©)

it should be noted, that the numerator of this expession is a
entire function because it is a sum of entire funcns.

The denominator is a polynomial and therefore itcan I

represented by a product involving its zeroes (thaNelerstras:

factonzation theorem).
According to the Paley—\Wener- Schwartz's theorertd (v) shoulc

be an entire function since it is Fourer transfornof finite function.




Proof (continue)

Substitution of polynomial zeros Into the functions of the
numerator leads to the follomng system of equatiofor determination

of unknown boundary functions.
aw) +F (X 44(9))+F (X nd*(9))=0, OvOC" LE)=0 @
These equations complete the proof.
This theorem gives an opportunity to develop an efttive metho
of numerical analysis of seismic wave’s propagatian continuum, its

INnteraction with structures and seismic isolation dvises.




FHnite element construction

Consider elastic continuum occupied finite domair during time
interval (0,T) under load f;. Let the displacements and stresses

described in a Cartesian coordinate systern{x;,X,,X;)in the form of

finite function:
U; (x1) ={U; (X, %5, %3)1©O(Q)O(T);;
g,; =10, ;}16(Q)O(T) ;
where O(Q) and O(T) are characternstic functions of domainQ

and time interval(0,T).




Differential equations of theory of elasticity
for finite continuum In distnbution

IUUj,ii + (A +:u)Ui,jj _pUj = _Fj +

o ;s cos(nx)o, + A[[U ]  cos(nx ) o] ; +

+44[0]], 053], + MU 1, cosm)al, -~ ()
_IO[U j ]t=0 o(t) + IO[U j ]t=T o(t-T)~-

-plU [ ]t=05(t) + po[U j ]t:T ot-T).

[U;lsm [, ], - discontinuities of functionsU; u o, ; at the normal

Intersection of the boundarys from inside of theQQ domain. Since th

functions U, andg; ; outside of this domain equal zerothe values ¢
these discontinuities[U;]u [o; ], are boundanes values of tt

functions.




Fourier Transform of the Equations

~

[V +v2 +v2 - Fa?10, + (B -0 v, :% ©

o

V,V,,V, - transformation parameters, corresponding to spa
coordinates,
w- transfomation parameter, corresponding tor vanable (7 =ct),

C . :
[ =— - where c,and c, are the velocities of compressional a

Cs

shear waves in medium,

~

U - the Founer transform of functionsU ; (displacements),

>~(i — the Founer transform of the nght parts of equation (5) .




Discretization Elastic Continuums

For numerical evaluation of dynamic theory elastidly problems
were developed different finite elements. The fing elemen
discretization of an elastic continuum (in the gemal case
nonhomogeneous) is performed such asotassure that mediun
characteristics inside of the element are constant.

The elements may have trapezoidal or rectangle formvith sides
parallel to coordinate axes (Fig. 1). As an exampleonsider ar

elements rectangle form.

g =
g B
»

d 2




Representation Fourier Transform of Hnite
Functions by Taylor Senes

For finite element equation remarkable properties 6 the Founer
transform finite functions may be used:

- Founer transforms of finite functions may be represented |
Taylor series.

The every “n” term of these series is a momentum dhe orginal.

Example, for finite on interval [-a,a| function f(x) it Fourier

transform may be represented in the form:

2

v j} x> f (X)dx + (¥

vV
21

E(v) = j f(x)dx+iZT xf (x)dx +

—a




The eqguations for the plain rectangular
element (Fg.1)

(=(A +2u)Vf = pvi + paf)J = (A + vy N = —F, —
—(A+ Zﬂ)ivl[e_wlaUA B eiV1aUB] —H Vz[e_iVZbUC B eiVZbUD] B
—Aiv [V, - €YV ] - ui Vz[e“vl""\7 -V ] +

+[e—iV1a0~.A ||/1a B]+[e II/2b |v2b D]

(=(A+ 243 = uvi + paf N = (A + v J = -F, -
—/]il/z[e_ivlaUA _ eivlaUB] _ IL[ivl[e—il/sz]C _ eiVZbUD] _
—piv, eV, -V, ] - (A + 2,u)i|/2[e'i”2b\7C -V ]+

+[e'i“2bﬁc |V2b0. ]+[e |v1a ||/1a B]




Equations for boundary functions definition

For every side of the element it is necessary tandi four boundary
functions U, V, g, 7 (comresponding honzontal and vertica

displacements, nomal and tangential stress).

For definition 16 boundary functions it is necessary to have
conditions.

Eight conditions may be obtained by using boundarse conditions o
every side of element or using equality of displacents and stress on ti
sides of the neighboring elements.

The additional eight equations can be obtained by using the alx
proved theorem

Zeros set of the polynomial corresponding to the stem (8) for plan:
case can be witten in the form:

[v:+v:-(wl/c,)” =0 and [V +V: - (w/c)* =0




Condition Equation Derivation

Expanding into Taylor senes the left and the nghtpart of the
equations (8)equate the left and the nght part of the equationsvher
v, =0 and whenv, =0. The abovementioned theorem lets formulat
the followmng conditions:

- the nght part of the first equations of the systeni8) must be equk

zero at(0,+w/ c;) and (+w/c,,0),

- the nght part of the second equations of the syste(8) must bx

equal zero at(0,+w/c,) and (xw/c,,0).

it deserves to be mentioned that at, =0 and v, =0 the equatior
system (8) uncouples into two independent equatioard polynomials

zeros set degenerates into acnodesy/ ¢, andtw/ C..




For the elements small in comparnson with
the wave-lengtheguatiors can be simplified
and after some elalboration may be represent
IN the form:

1) [UC+UD]_[UA+UB]:O;
2) [tc +rp]/2+ pu([Ue -Up ]/ 20+[V, —V;]/28) = 6;
3) 4abpuws[U,+U_]/2-2b0, —0,]-2a[r. —-1,] =0,

4) [o,+0:]12+(A+2u)[U, -U;]/2a+ AV, -V,;]/2b=0;
5) 4abpar[V. +V,]/2-2d[0. —o,]-2b[r, —1,] =0;

6) [o. +0,]/2+ AU, -U ]/2a+(A+2u)[V. —V,]/2b=0;
7) [Va+Ve] =[Ve +V,] =0;

8) [7,+T5]~[7c +7,]1=0;




Physical sense of these equations

The 1-th and the 7h equations correspond to th
continuity law.

The 2-th, 4-th and the @h equations correspond t
Hook’s law.

The 3-th and the 5h equations correspond to th
centers of masses moving law.

The 8-th equation corresponds to the twonesaw.




Advantages of the Method

1. There iIs no need to use nonlogical modeling
continuum by lamped masses.

2. The unknown parameters of the algebraic systems
are directly the stresses and displacements of the elements
surfaces.

3. It Iis possible to construct semi-infinite elements for
describing transmitting boundaries.

4. It is possible to use three-dimensional elements for
analyzing three-dimensional effects.

5. The method may be used for soil structure
Interaction analysis in the time or frequency domain.

6. Nonlinear analysis may be used for design soil
structure interaction in time domain.




Disadvantages of the method

Large number degrees of freedonof elements:

-16 degrees of freedomand 8 equations for the plain
elements,

- 36 degrees of freedomand 18 equations for the tree
dimensional elements.

But it should be noted, that these disadvantages for
modern computer engineering present no difficulty.
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Longitudinal and Transverse Waves
Speeds in Unconsolidated Granular
Medium
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E., o, andv_ are constant ofthe solid of
which the spheres are made.
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Artificial and Semi-artificial Material
for seismic protection layers

There is a good chance to create an artificial or
semi artificial material with necessary properties

At present time In “Soil Mechanic Laboratory”
of the Moscow State University of Railway
Engineering the new semi artificial materials are
created and tested.

These materials are unconsolidated alloys of
polymers and sands with different ratios.

We try to create materials with necessary values
of compressional and shear waves speeds as well as
necessary values of natural damping.




Site and Seismic Protection Layers Affect
on Ground Motion

- soll profile act like filter,
- change In frequency content of motion,
- layering complicates the issue,

- amplification or de-amplification of ground
motions can occulr,

- seismic protection layers application
requires to perform special calculations




Nuclear power plant without seismic
Isolation layer under foundation
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Nuclear power plant with seismic isolation layer
under foundation ( granular polymer with sand)
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Application

Seismic input: ground motions of acceleration time
histories, smoothed Fourier spectrum of the Chi Chi
earthquake 1999 year




Seismic isolation devices for
protection of different elements and
units of power plant

In many cases problems of seismic isolation of
equipment and different objects of the plant
appears

These objects are turbines, reserve control

panel etc.

In that case standard seismic isolation devises
may be used.

A lot of seismic isolation devises that may be
used for protection of nuclear power plant
equipment are produced by different companies




Seismic I1solation devices

There are very interesting books, where one can
find basic requirements, description, modeling and
example of different seismic isolation devises:

-“Earthquake engineering” by Nazzal S. Armouti,
PH.D,.

-“‘Earthquake engineering handbook” edited by
Wai-Vah Chen and Charles Scawthorn.

The 17-th chapter “Base Isolation” of the last one
has been written by Yeong-bin Yang, Kuo-Chun
Chang from Taiwan University, Taipel and Jon-Dar
Yau from Tamkang University, Taipel.




Low Damping Natural or Synthetic
Rubber Bearing

Linear behavior in shear
Damping ratio 2-3%
Simple to manufacture
Easy to model

Response not sensitive to
Rate of loading, history of
oading, temperature, aging

P(t) = K u(t) + Cg U(T)




High Damping Natural or Synthetic
Rubber Bearing

_inear behavior in shear

Damping ratio 10-20%

Damping increase by adding
extra fine carbon black, oll
resin and other fillers

ldealized hysteretic loop Stiffness and damping
depend on:

- elastomer and filler,

- contact pressure,

- velocity of loading,

- temperature.




Lead Rubber Bearing

Low damping rubber
i g § combined with central lead

core

Hysteretic response is

strongly displacement-
dependent

Hysteretic loops
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Friction Pendulum Bearings




Passive Energy Dissipation Systems

Velocity dependent systems:
- viscous fluid dampers,
- Viscoelastic solid dampers.

Displacement dependent systems:
- metallic yielding dampers,
- metallic friction dampers.

Vibration absorbers:

- tuned mass dampers,
- shape-memory alloys.




Seismic isolation devices (dampers)

Fluid dampers Viscoelastic dampers

Developed in the 1960°s
for Wind Applications
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Conclusion

1. 70% of urban and industrial regions are
earthquake prone areas. In many of these regions there are
serious deficiencies in the numbers of energy resource.

2. Modern investigations in the field of seismology give
an opportunity to present reliable seismic input information
for any regions.

3. Nowadays current technology gives an opportunity to
produce the new materials with necessary prescribed
properties.




Conclusion(continue)

4. At present time In many countries different
vibroisolation devices are manufactured.

5. Modern science and engineering gives an
opportunity to design and to construct the safety-related
nuclear structures in region with high seismic activities

6. In spite of plenty of computer programs for seismic
design of structures it is necessary to improve analysis

/. The method based on the properties Fourier
transform finite functions gives an computational feasibility
seismic analysis of safety-related of nuclear structures.




Thank you!




