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Introduction

In Russian Federation and all over the world 
there are a lot of regions with high seismic activity. 

It is no secret that in many of these regions 
energy gap is an essential problem. It should be 
noted that in many cases for such regions 
nowadays there is no alternative of nuclear 
energy. 

At present time the new production of power-
generating units of nuclear plant is under 
consideration in Russian Federation.



This year in Russian Federation the NewCode
“Seismic analysis of Nuclear Structures” has been
developed

Seismic analysis of safety-related nuclear 
structures is a very important and complex problem

There are a lot of different methods and 
computer programs,  recommended for seismic 
design of the nuclear structures.

We introduce our own method, which may be 
interesting for researchers, designers and students.

We suppose that our method has preference in 
comparison with well-known methods on dynamic 
problem application



Definitions
The functions describing stresses and strain

of finite continuum or bodies that are equal to
zero outside the domain occupied of this
continuum or the body are the finite functions.

An entire function, (integral function), is a 
complex-valued function that is holomorphic 
over the whole complex plane.

Every entire function can be represented as a 
power convergent series.

Any entire function can be represented by a
product involving its zeroes. (The Weierstrass
factorization theorem).



Paley–Wiener- Schwartz's Theorem 

“The Fourier transform of a distribution of
compact support on Rn is an entire function on
Cn”

The classical Paley–Wiener theorems make
use of the holomorphic Fourier transform on
classes of square-integrable functions supported
on the real line.

The theorem for distribution) was proven
later by Laurent Schwartz (1952).
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The Main Principles of the Method

The functions which described displacement,
stresses and strain of finite continuumor bodies
are represented by finite functions that are equal
to zero outside the domain occupied of this

continuum or the body.

In the right parts of represented in that way
differential equations there will be functions
describing load, delta functions and its
derivatives, concentrated on the boundaries of
the domain.
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The Right Parts of the Differential 
equations

The functions of the right describe interaction 
between the finite continuum and surroundings and 
represent stresses, strain and displacement on the 
boundary. 

Some of these functions are given. The remainder 
unknown functions it is necessary to define.  

Paley–Wiener- Schwartz's Theoremgives an 
opportunity to install relations between loads and 
value of boundary functions and to determine 
unknown ones.



Boundary Problem Represented in 
Distribution

           Let Ω - is compact domain with S
boundary, 

1,
( )

0,

x

x

∈Ω
Θ Ω =  ∉Ω

- characteristic function of 

this domain, 
        then  { } ( )( ) ( )U x U x θ= Ω  – a finite function.
        
       Suppose L   - differentiation operator with 
constant coefficients in Ω domain.  
        Applying differentiation operator L  to the 
finite function ( )U x , the differential equation 
can be written in distribution: 

( ) ( ) ( ) ( )k k
k kLU x q x S Sµ δ γ δ= + +∑ ∑  



( ) ( ) ( ) ( )k k
k kLU x q x S Sµ δ γ δ= + +∑ ∑   

where  ( )q x – load, applied inside domain 
(finite function), 

kµ - given boundary values function ( )U x  and 
values of its derivatives at the normal intersection
of the boundaryS , 

 

kγ - unknown boundary values function( )U x

and values of its derivatives at the normal 
intersection of the boundaryS , 

 
       ( )k Sδ - delta functions and its derivatives, 
concentrated on the boundaries S of the domain 
Ω.   



Theorem
Ω

 “”Unknown boundary values function ( )U x  and values of its 

derivatives, can be determined by the values of   Fourier transform of 
the right part the differential equation on zeroes polynomial 
corresponded to operator L”.  

 
The differential equation  becomes, after application of the Fourier 

transform:    

( ) ( )( ) ( ) ( ) ( ) ( )k k
k kL U q F S F Sυ υ υ µ δ γ δ= + +∑ ∑% %               (2)

where 
1 2 3( , , )υ υ υ υ - transformation parameters, 

( )L υ -polynomial corresponded to operator L , 
( )U υ% - Fourier transform of finite function ( )U x , 
( )q υ% - Fourier transform of finite function ( )q x , 

( )( )k
kF Sµ δ∑  and ( )( )k

kF Sγ δ∑  - Fourier transform of the 

boundary finite functions. 



Proof
Ω

The equation (2) makes it possible to write the expression for 
Fourier transform of ( )U x  function: 

( ) ( )( ) ( ) ( )
( )

( )

k k
k kq F S F S

U
L

υ µ δ γ δ
υ

υ
+ +

= ∑ ∑%
%                 (3)

It should be noted, that the numerator of this expression is an 

entire function because it is a sum of entire functions.  

The denominator is a polynomial and therefore it can be 

represented by a product involving its zeroes (the Weierstrass 

factorization theorem).  

According to the Paley–Wiener- Schwartz's theorem ( )U υ%  should 

be an entire function since it is Fourier transform of finite function. 



Proof (continue)
Ω

Substitution of polynomial zeros into the functions of the 

numerator leads to the following system of equation for determination 

of unknown boundary functions. 

( ) ( )( ) ( ) ( ) 0k k
k kq F S F Sυ µ δ γ δ+ + =∑ ∑% ,    : ( ) 0nC Lν υ∀ ∈ =      (4)

These equations complete the proof.  

This theorem gives an opportunity to develop an effective method 

of numerical analysis of seismic wave’s propagation in continuum, its 

interaction with structures and seismic isolation devises. 



Ω

Finite element construction 

Consider elastic continuum occupied finite domain Ω during time 

interval (0, )T  under load jf .   Let the displacements and stresses are 

described in a Cartesian coordinate system 1 2 3( , , )x x x in the form of 

finite function:  

1 2 3( , ) { ( , , )} ( ) ( )i iU x t U x x x T= Θ Ω Θ ; 

, ,{ } ( ) ( )i j i j Tσ σ= Θ Ω Θ  ; 

where ( )Θ Ω  and ( )TΘ  are characteristic functions of domain Ω

and time interval(0, )T . 



Differential equations of theory of elasticity 
for finite continuum in distribution  
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 [ ]i sU и ,[ ]i j sσ  - discontinuities of functions iU  и ,i jσ  at the normal 

intersection of the boundary S  from inside of the Ω domain. Since the 

functions  iU  and ,i jσ  outside of this domain equal zeros the values of 

these discontinuities [ ]i sU и ,[ ]i j sσ  are boundaries values of the 

functions.  



Ω

Fourier Transform of the Equations 

2 2 2 2 2 2
1 2 3[ ] ( 1) i

i j i j

X
U Uν ν ν β ω β ν ν

µ
+ + − + − =

%
% %                     (6)

1 2 3, ,ν ν ν  - transformation parameters, corresponding to space 

coordinates, 

ω- transformation parameter, corresponding to τ variable ( Pc tτ = ), 

P

S

c

c
β =  - where Pc and Sc  are the velocities of compressional and 

shear waves in medium, 

jU% - the Fourier transform of functions jU  (displacements),    

iX%  – the Fourier transform of the right parts of  equation (5) . 



Ω

Discretization Elastic Continuums 
For numerical evaluation of dynamic theory elasticity problems 

were developed different finite elements. The finite element 

discretization of an elastic continuum (in the general case 

nonhomogeneous) is performed such as to assure that medium 

characteristics inside of the element are constant.  

The elements may have trapezoidal or rectangle form with sides

parallel to coordinate axes (Fig. 1). As an example consider an 

elements rectangle form. 
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Ω

Representation Fourier Transform of Finite 
Functions by Taylor Series 

 

For finite element equation remarkable properties of the Fourier 

transform finite functions may be used:  

- Fourier transforms of finite functions may be represented by 

Taylor series.  

The every “n” term of these series is a momentum of the original.  

Example, for finite on interval [ ],a a−  function ( )f x  it Fourier 

transform may be represented in the form:  
2

2
2

( ) ( ) ( ) ( )
2( )

a a a

a a a

F f x dx xf x dx x f x dx
i i

ν νν
− − −

= + + +∫ ∫ ∫% L         (7)



Ω

The equations for the plain rectangular 
element (Fig.1)  
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Ω

Equations for boundary functions definition 
For every side of the element it is necessary to find four boundary 

functions , , ,U V σ τ  (corresponding horizontal and vertical 
displacements, normal and tangential stress).  

 
For definition 16 boundary functions it is necessary to have16 

conditions.  
 
Eight conditions may be obtained by using boundaries conditions on 

every side of element or using equality of displacements and stress on the 
sides of the neighboring elements.   

The additional eight equations can be obtained by using the above 
proved theorem. 

Zeros set of the polynomial corresponding to the system (8) for plane 
case can be written in the form: 

 
2 2 2
1 2 2[ ( / ) 0cν ν ω+ − =  and  2 2 2

1 2 1[ ( / ) 0cν ν ω+ − =  



Condition Equation Derivation
Ω

Expanding into Taylor series the left and the right part of the 

equations (8) equate the left and the right part of the equations when 

1 0ν =  and when 2 0ν = . The above-mentioned theorem lets formulate 

the following conditions: 

- the right part of the first equations of the system (8) must be equal 

zero at (0, / )Scω±  and  ( / ,0)Pcω± , 

- the right part of the second equations of the system (8) must be 

equal zero at (0, / )Pcω±  and  ( / ,0)Scω± . 

It deserves to be mentioned that at 1 0ν =  and 2 0ν =  the equation 

system (8) uncouples into two independent equations and polynomials 

zeros set degenerates into acnodes: / Pcω±  and / Scω± .  



For the elements small in comparison with 
the wave-length equations can be simplified 

and after some elaboration may be represented 
in the form: 
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Physical sense of these equations 

     The 1-th and the 7-th equations correspond to the 
continuity law. 
 

     The 2-th, 4-th and the 6-th equations correspond to 
Hook’s law. 
 

     The 3-th and the 5-th equations correspond to the 
centers of masses moving law. 
 

     The 8-th equation corresponds to the twoness law. 



Advantages of the Method
1. There is no need to use nonlogical modeling

continuum by lamped masses.

2. The unknown parameters of the algebraic systems
are directly the stresses and displacements of the elements
surfaces.

3. It is possible to construct semi-infinite elements for
describing transmitting boundaries.

4. It is possible to use three-dimensional elements for
analyzing three-dimensional effects.

5. The method may be used for soil structure
interaction analysis in the time or frequency domain.

6. Nonlinear analysis may be used for design soil
structure interaction in time domain.



Disadvantages of the method

Large number degrees of freedomof elements:

-16 degrees of freedomand 8 equations for the plain
elements,

- 36 degrees of freedomand 18 equations for the tree
dimensional elements.

But it should be noted, that these disadvantages for
modern computer engineering present no difficulty.



Model of unconsolidated granular medium
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Longitudinal and Transverse Waves 
Speeds in Unconsolidated Granular 

Medium
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       sE , sρ  and sν are constant of the solid of 
which the spheres are made.  



Longitudinal and Transverse Waves Speeds in 
usual soils (for comparison)

S waves speedP waves speed

µβ
ρ

=2λ µα
ρ

+=



Artificial and Semi-artificial Material 
for seismic protection layers

There is a good chance to create an artificial or 
semi  artificial material with necessary properties.

At present time in “Soil Mechanic  Laboratory” 
of the Moscow State University of Railway 
Engineering the new semi  artificial materials are 
created and tested.

These materials  are unconsolidated alloys of 
polymers and sands with different ratios. 

We try to create materials with necessary values 
of compressional and shear waves speeds as well as 
necessary values of natural damping.



Site and Seismic Protection Layers Affect 
on Ground Motion

- soil profile act like filter,

- change in frequency content of motion,

- layering complicates the issue,

- amplification or de-amplification of ground
motions can occur,

- seismic protection layers application
requires to perform special calculations.



Nuclear power plant  without  seismic 
isolation layer  under foundation



Nuclear power plant  with seismic isolation layer  
under foundation ( granular polymer  with sand)



Model of Nuclear power plant  with seismic isolation 
under foundation (layer granular polymer  with sand)



Preliminary Analysis indicated that 
Unconsolidated Granular Layers are the most  
effective for protective from surface waves



Application
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earthquake 1999 year



Seismic isolation devices for 
protection of different elements and 

units of power plant 
In many cases  problems of seismic isolation of 
equipment and different objects of the plant 

appears

These objects are turbines, reserve control 
panel etc.  

In that case standard seismic isolation devises 
may be used.

A lot of seismic isolation devises that may be 
used for protection of nuclear power plant 
equipment are produced by different companies



Seismic isolation devices 

There are very interesting books, where one can 
find basic requirements, description, modeling and 

example of different seismic isolation devises: 

-“Earthquake engineering” by Nazzal S. Armouti,
PH.D,.

-“Earthquake engineering handbook” edited by
Wai-Vah Chen and Charles Scawthorn.

The 17-th chapter “Base Isolation” of the last one
has been written by Yeong-bin Yang, Kuo-Chun
Chang from Taiwan University, Taipei and Jon-Dar
Yau from Tamkang University, Taipei.



Low Damping Natural or  Synthetic 
Rubber Bearing 

Linear behavior in shear
Damping ratio 2-3%
Simple to manufacture 
Easy to model
Response not sensitive to
Rate of loading, history of 
loading, temperature, aging

Model

( ) ( ) ( )eff effP t K u t C u t= + &( ) ( ) ( )eff effP t K u t C u t= + &( ) ( ) ( )eff effP t K u t C u t= + &



High Damping Natural or  Synthetic 
Rubber Bearing 

Linear behavior in shear
Damping ratio 10-20%
Damping increase by adding  
extra fine carbon black, oil 
resin and other fillers

Stiffness and damping
depend on:
- elastomer and filler,
- contact pressure,
- velocity of loading,
- temperature.

Idealized hysteretic loop



Lead Rubber Bearing 

Low damping rubber 
combined with central lead 

core
Hysteretic response is 
strongly displacement-

dependent

Hysteretic loops 



Friction Pendulum Bearings

Model

Mathematical model of friction pendulum bearings 

( )
W

F u W sign u
R

µ= + &



Passive Energy Dissipation Systems 

Velocity dependent systems:
- viscous fluid dampers,
- viscoelastic solid dampers.

Displacement  dependent systems:
- metallic yielding dampers,
- metallic friction dampers.

Vibration absorbers:
- tuned mass dampers,
- shape-memory alloys.



Seismic isolation devices (dampers)

Fluid dampers

Fluid dampers within chevron brace

Viscoelastic dampers



Steel Plate Dampers 



Conclusion

1. 70% of urban and industrial regions are
earthquake prone areas. In many of these regions there are
serious deficiencies in the numbers of energy resource.

2. Modern investigations in the field of seismology give
an opportunity to present reliable seismic input information
for any regions.

3. Nowadays current technology gives an opportunity to
produce the new materials with necessary prescribed
properties.



Conclusion(continue)
4. At present time in many countries different

vibroisolation devices are manufactured.

5. Modern science and engineering gives an
opportunity to design and to construct the safety-related
nuclear structures in region with high seismic activities

6. In spite of plenty of computer programs for seismic
design of structures it is necessary to improve analysis

7. The method based on the properties Fourier
transform finite functions gives an computational feasibility
seismic analysis of safety-related of nuclear structures.



Thank you!


